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THE LOCAL ISOMETRIC EMBEDDING IN R* OF
2-DIMENSIONAL RIEMANNIAN MANIFOLDS
WITH NONNEGATIVE CURVATURE

CHANG-SHOU LIN

0. Introduction

In this paper, we will study the local isometric embedding into R® of
2-dimensional Riemannian manifold. Suppose that the first fundamental form
Edu® + 2Fdudv + Gdv® is given in a neighborhood of p. We want to find
three functions x(u, v), y(u,v), z(u,v), such that

(0.1) dx*+ dy*+ dz?> = Edu® + 2Fdudv + Gdv®

in a neighborhood of p.

This embedding problem has already been solved when the Gaussian
curvature K does not vanish at p. It is still an open problem when K vanishes
at p. Actually, A. V. Pogorelov gave a counterexample that there exists a C>*
metric with no C? isometric embedding in R*. In Pogorelov’s example, in any
neighborhood of p, there is a sequence of disjoint balls in which the metric is
flat. And the Gaussian curvature K of this metric is nonnegative. The main
theorem of the paper is the following.

Main Theorem. Suppose that the Gaussian curvature of a C* metric is
nonnegative for s > 10, then there exists a C*~° isometric embedding in R®.

Instead of studying the nonlinear system (0.1) of first order, we will study a
second-order Monge-Ampére equation satisfied by a coordinate, say z. The
equation can be derived as follows: If the Gaussian curvature of Edu? +
2Fdudv + Gdv? — dz? vanishes, then z must satisfy

(0‘2) (211 - I‘lilzi)(z22 - inzzi) _(212 - FIiZZi)Z
= K{EG — F> - Ez} — Gz} + 2Fz, - z,} = K(u,0,vz),
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where z, = (3z/0u), z, = (3z/9v), z,; are second derivative of z, and T}, are
symbols. Conversely, suppose z sausfles (0.2), then the metric Edu? +
2Fdudv + Gdv? — dz? is flat. Hence there exists a coordinate system x, y,
such that dx? + dy? = Edu® + 2Fdudv + Gdv* — dz* which s (0.1).

In this paper, we will prove that there exists a smooth local solution of (0.2),
provided K is nonnegative.

We may assume p is the origin (0,0), and K(0,0,0) = 0. Set u = &2x,
v = g2y, z = (0%/2) + £>w. (0.2) becomes

(sw — T3y — 53F1’1Wx,)(1 +ew,, — e’ I3y — E3I‘2[2wxl)
—(sw — e Thy — 53Ff2wx[)2 — K(e*x, &%, e3vw) =0,

where x; = x, x, = y. Cancelling ¢ on both sides, we have

(0.3) we, + eF(e, x, y, vw,viw) =0

where

Fle,x, y,vw,viw) = (wx — elhy — szrflwxl)< —elhy — 2T2’2wxl)
_( Erlz)’ 2F1[2w ) ruy Erlllwx, ‘(K(EZX,E yaEBVW))/EZ'

Fix x,, yo > 0, consider a rectangle D: D = {(x, p)||x| < xo, |¥I <)o}
Choose two nonnegative cut-off function x; € C*(D) as follows:

. 3y
1 lfIYI 2 1 1fIy| 40,
X1 = 3 X2=
. Yo o
0 1f|y|>T, 0 iflyl> >3
cut-off the nonlinear term by
Fe,x, y,vw,v?w)
= X1{( —elhy — zrlllwx,)( —elhy — ¢ rzlzwx,)
2 K szx,szy,s3VW)
- (W12 N Ezrllzwx,) - ( 22 }

EXz(ruW - rlzly)'
In the following, we will consider the following equation instead of (0.3):
(0.4) w,, + eF(e,x, y,Yw,viw) =0
For any smooth function w defined in D, define
(0.5) G(w)=w,_ + eF(e,x,y,vw,7w).
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Lemma 0.1. Suppose |w|c2py < 1, and 8 > 0 be a constant such that
|G(W) |20y < 6.
Then if ¢ is sufficiently small, Lo(w)p = L(w)p + 0x,p,, is a degenerate
elliptic second-order equation where L(w)p is the linearized equation of (0.4)
about w.
Proof. Suppose the linearized equation is L(w)p = p,, + €L a; P, T
lower order term. We want to prove the determinant of

1+ ea ea
A= 11 12
£a, eay, + 0x,

is nonnegative. The determinant is, after a straight computation,

ea,, (1 + eay,) — e%al, + Ox,(1 + eay;) = ex,G(w) + x3K + 0x,(1 + eayy).
In the computation, we use x; - x, = Xx;- S0 if € is small, then the determinant
> 0. qed.

In the following sections, we will prove that there exists a smooth solution of
(0.4). In §1, we will study existence, regularity, and estimates of the degenerate
elliptic equation Ly(w). In §2, we will modify the Nash-Moser-Hormander’s
iterative scheme to solve (0.4). Then we will complete the proof of the Main
Theorem.

1. Linear theory
In this section L will represent as a degenerate elliptic operator of second-
order defined in a rectangle D = {(x, y)||x| < x4, |y| < ¥,}. Consider the
following boundary value problem:
2
Lo=p + Y a; Py taps+ap, +ap=g inD;
(1.1) ij=1 ’
p(xg,¥) = p(—x0,7) = 0.
Assumption. All the coefficients a,;, a;, and a vanish near y = +y,. And
Yla;lcs + lailcs + |alce < Coe, where C is a fixed constant.
Set

p(x, y) =u(x, y)e_“z, A> 0.
Then (1.1) becomes

2 2
Lu=u_+ Y, au, + 2 bu, + hu = e“lg,

ij¥xx;

(1.2) ij=1 i=1
u(xo,y) = u(—xo,y) =0,
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where
by = —4(1 + a;))Ax + ay,
(1.3) b, = —4a Ax + a,,
h= =201+ a;)X+ 4(1 + a )N — 2b,Ax + a.
Instead of studying equation (1.2), we will consider the following regulariza-
tion of (1.2):
a2
Lu= —V[D*D -—
(1.4) ox?
u(xq,y) =u(—x,) =0
where Du = (y¢ — y*)¥du/dy), D* is the adjoint of D, and » > 0 is a small
constant. A will be chosen large but independent of » and &, and always
satisfies Ax, < 1.
Theorem 1.1. Suppose all coefficients are smooth and €, v are small. Then
there exists sy(&,v) > 0 such that for any g € H*(D), s < 5, there exists a
unique solution u € H*(D) of (1.4) and the following estimates are true:

(1.5) s e+ T(s)ullm },

where

u+ Lu=g in D;

w<Cflg

I(s)=X{la,

i,

2 ]

- )
and C, is a constant which is independent of v and e.

H* is the Sobolev space with the norm: ||u|| e = (X < || D*u|72)'/* where
D* is any ath derivative.

Throughout the section, C always be a constant which is independent of »,
and will change from line to line. A > 0 will be a fixed number throughout. We
will divide the proof of Theorem 1.1 into several lemmas. First, we will prove
the existence of weak solution of (1.4).

Suppose u, ¢ are smooth functions and satisfy the boundary conditions

u(xo,J’)=u(_xo’J’)=¢(xo,)’)=¢(_xo,Y)=O-Then
Qv(¢’u)E _(¢5Lvu)=yl:f ¢xux+fD¢Du] f¢xux+fa’j x x

12 2 3a,,
5;[( Z3 )(4’xi” )
= Jj=1 J
1{ ¢ ab; z da,;
[ ) ;7_ L x| %
i= : i,j=1 J
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Define H' as the space consisted of functions « such that u, Du, u, are in
L*(D), and satisfy u(x,, y) = u(—x,, y) = 0,
Melll =Hlellzz + 1| Dullzz + [, | 2.

Lemma 1.2 (existence of weak solution). Given g € L*(D), then there exists
a unique u € H' such that

0,(¢,u) = —(¢,8) foranyd € H'.
Proof. Q,($,u)is a bounded bilinear form of H'. We want to prove

(1.6) 0,(¢,) > Gligll* ve < A
Because db, /dx involves A, we write

2 3 9
ctsor=o|f e fion] e fus £ fude

9%,
ij )
ax,.ax”"5 :

J

- ijfb,¢xi¢+f {—h+2
i=1 i,J

We note

1 3¢ 1 [ 8b, , X
/b2¢y¢—2/b23y——2/ 3 Sothat/b2¢y¢<C£/¢.
Thus we only have to estimate [ b,¢.¢. Suppose A; > A, be eigenvalues of

1+a, ap
b
ap as;

and o', v? are unit eigenvectors such that

= ()= Gh - (3)- 10

near y = +y,. Define ¢,, ¢, by the following

¢
(1.7) ((; = ¢yt + P07,
) ‘
since v? is the eigenvector with eigenvalue A ,,
2
a5,
v? = 12Y2

_1+011_A2

is small. Also by the relation of u,, u,, u;, u,, we have

e

1 2,2
U9, + Ulvquy

1.7y o, = 5
1—(1)

X
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and therefore

/blqbqb— f bl” ”2(¢ )y + [ bivird
2

1 _(U%)z

1 0 bIU%U% 2 b1
= — — o ¢ .
2/ D1 - () /1—(vi1)2

Hence

[bes|<cf e+ [ A,

where we use Schwartz inequality and the fact that A; is close to 1 when ¢ is
small, and C is a constant independent of A. Here Ax, < 1 is required. Hence,
if A — C =1, then

Q,(¢,¢)>v[/ o+ [ ID¢!2]

1
5 A+ [ A+ (A= O) f ¢ = vllgll’.

Then we apply Lax-Milgram’s theorem to get a weak solution. g.e.d.

We will prove that the weak solution is smooth provided g is smooth. Since
L, is elliptic inside D, u may be supposed smooth inside D by regularity
theorem of elliptic equation. We only have to prove that u is smooth up to
boundary of D.

Lemma 1.3. Suppose g € H(D), vs*> <1, X is large, and u is the weak
solution of (1.4), then u, Du,u, € H*(D).

Proof. Define a,(y) = 0 as follows:

(1.8)

19) o) o=y f -yt E<y<y-—&
1.9 aly)= . £ £
0 ify =y 5,y<—y0+5,
aaz()’)
Toy |5

where C, is a constant independent of & Define D.u = a,(0u/dy). Differenti-
ating (1.4) by D, we have L D.u = D.g + [L,, D.]Ju. Taking the inner product
with D.u, we have

v[f | D, |” +|DDEu}2] < —(Du, L,D.u)

= —(Du, D;h) —(Dau, [L,, D;]u).
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Since we have already known u € H',

|(Du, D.g) | <l Daull 2 - | Degll 2 < G,
where C, is independent of & Thus

[L,,D.]= —»[D*D,D,| +[L, D,]
= —»(D*[D,D,] +[D*, D,|D) +[L, D],
(D, D*[D, D.Ju)|=|(DD.u, [ D, D,u)|
< C|Dul|r> | DDz < Gl| DDul2,

by (1.9). Similarly,

(D, [D*, D Du)| < GliDDu|,:.

b

Because each term in [L, D;] involves a,;, b;, and y-derivatives of a,;, b;
which vanish near y = +y,, [L, D.] = [L, D] for & is small. Combining all
estimates, gives

o [ 10w+ [ 10D.7) < DDAl
so that
[ 1D " + [ 1Dl < C(5),
where C; is a constant independent of & Taking the limit ¢ — 0, we have
f IDux|2+f |D2u|’ < +0co.

From (1.4) we also conclude
u,, € L*D).

Define

1 if y2 < yd — &%,

a(y) =10 if y2 =y,

linear in between.
Define Du = a,(y)(0u/dy),and Du = (y¢ — y*)(0u/dy) = a(y)(du/dy). By
the previous step, we know

DD.u, Du, € L*(D).
Differentiating (1.4) by D., we have '
L(Du)=Dg+[L,, D]u.
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Taking the inner product with D.u, yields
o f 10Dal +1ba F| + (1 = Dl
< - (Dzu’ Dég) + (b@“’ [Dp L,u),
by (1.8).
[L,.D]= —»[D* DD —vD*[D,D]+[L, D],
. ( da; '()a) 0

(DD ={agy ~ oy oy

Since (94,/9y) = const # 0 only for yZ — &* < y> < y¢, D, D,Ju| < C,| D,
for some constant C; independent of &. Thus

|(I)Eu7 D*[D, b@]”) | < CzquauHLz : Hbsuﬂy-
Similarly, we have
|(D.u, [ D*, B,] Du)| < C;(| DDl 12 + 1)|| Dl -
As before, [ L, D.] is independent of £ if & is small. Hence, we have
~ 2 ~ 2 ~ 2
10 [1PPali +1Du o] + (= Ol Dl
< Cy{ I Dl -l gllen + v DDl 2 - | Dau |2 + | D] 2 }
for a constant C, independent of & Using Schwartz inequality, we have
”Dbéu HLZ + ”DEux .2 + HD@L‘HLZ < G

independent of & Taking the limit & |0, we have u , Du ,u,, € L?, which is
the case s = 1.

We can prove Lemma 1.3 by induction on s. Now suppose u, u,, Du € H®;
we want to prove u, u,, Du € H**!, Differentiating (1.4) by 9°/dy*, we have

K K _ 2,2 K
L,,(aa su) +2sv%D(g—L§) + S(Sz 1)1/8 Z) (Zy) g—u;
(1.11) o’ ' o
= 0g + otherterm = ¢
ays T _gs'

The other term in the above expression consists of derivatives of order s + 1,
or s with vanishing coefficients near y = +y,, and derivative of order < s;
hence g, € H(D). As the same proof in the previous step, it is easy to prove

s aS
D2(gy’§> and D( ay”;‘) in L*(D).
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Differentiating (1.11) by D, and doing the same steps as (1.10), we have
2 2

s s+1 s 2
MYk e e B PR P KT
J 12 ay dx 12 ay 122
~ 0°u - 0'u — d°u
< G &l (1 Dozl + ¥ PD.—\ | D
4{”g “H ays 2 ay 2 ays 2
R R 2
+’1—)éal§ + vs? T)éalﬁ }
ay 2 ay L2
Hence if »s? < 1 and X is large, then
5 s+1 s
R R s P e
y°|\ 2 ay‘ax| . 9y |2

is bounded and independent of z. Taking the limit £ ] 0, we prove
as+1u as+2u as+1u
ayS+1 ? ay:+d1x ? ay:+1
From (1.4), (1 + » + ay,)u,, = g + D*Du + terms with coefficients vanishing
on y= %y, + lower order terms. Differentiating the above express by
(8% /3x*)as~*/3y°~*%), k=0,1,2,---,s, we conclude with u, € H**(D).
The fact

€ L*( D).

Fu o
ays ay:

implies #, Du and u, € H**1(D). Thus we have finished the induction step.
Proof of Theorem 1.1. To prove estimate (1.5), we may assume g and u are

both smooth functions. Differentiating (1.4) by 9°/dy*, we have

°u) 0% 9°
L”(ays) Ay +[L”’ ayJ]u'

0°u 9°
(5[]

a° da °u
= —2sD*—
ay‘]u e

Fu p Badul| |1 da (8
l(ay“” 3y ayf) ‘lzf ayD(ayf)]

_ Ll peda(du)’
‘2“1’ ay(ayf)

€ H(D) and u, € H**Y(D)

We want to estimate

Since

[D*D, + terms with y derivatives of order < s,

2
'u

ay’

>

<Cf
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we have
/ 2
do'u

(1.12) ‘( o'u [D*D, 9" }u) .

ay dy ay'll 2
Let D* denote any derivative of order || We will use following inequalities
which come from interpolatibnal inequalities immediately:
(1.13) ID*uD®l|z2 < C,(lullr=llvllm + ullmlvl=),
where |a| + |B| =5, and ||u||;= < C||u|| 42 Using integration by part and
(1.13), we can estimate

RO S
ay*’ a"fax,-axj’ oy* !

< Cs{”aijllczuu

<2C

I<s

(1.14)

&u
ay’

e+ ula - lagl e )

L? ’
Similarly,

vu [, 8 @]
oy° | 7ox, 3y

d°u 9°

LA AL
(5 54
Combining (1.12), (1.14), (1.15) and the assumption, we have

0*u o°
(55 22

T(s) = X llayll e +1bllee + 1] ae.
Now denote u* = 0°u/dy*, and u; as defined in (1.7), i.e.,

us
= 5l 5,2
= u v + uyv°.

ayJ. 12

d‘u
dy*

< G Neluller +llulml bl }

>

’ du

(1.15) < G{llullalnle +|a

HS u”H2}

o’u
ay’

< &{(v+ Ollulla + T()ulr)

2

12

where

K
¥

We want to prove the following inequalities by induction on s:

gy L1l [ 1] G+ [ st + [ e
< C{llglle + T(s)ullan ).
(1.16)0 is just (1.8). Suppose we have proved (1.16)s-1. By (1.8),

o [ 1l 10w ) 3 [0y + [ 22 + (= O f 1P

(1.17)s < —(w, L) <lwlz-lgle
+C{ (v + e)lulle + T()ullm Hu 2.
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By (1.7)" we have
e < ol 2 +llag el 2}

< G{[lufs0 2 + ellusfe )

Solving for u,, from (1.4), and differentiating by

(1.18)s

as—2
ke k2 K= 0rs o2
we have
0°u <C { o’u + ‘ °u
axk+2ays—k—2 L = Yk axk+lays—k . laxkays—k R

wmm+wwﬂﬂwwuw}

Summing over &,

u ’u
s C; :+"——? +
e < sl +| 54 |2
meﬂﬂwmnn}

By (1.18)s and (1.16)s-1,

o’u o
lullz < Cs{ 3y . + “ul 1“L2 +lulla +ufa2T(s) + ”g”H‘}
(1.19)s £
o’u
<cf|SH st a4 huler(s).
y 12

Now we can estimate the right-hand side of (1.17)s,

2 2 1 2 2
o [ 1l + [ 10w l) + 3 [ At + [ A + (=€) f 1w
0'u
ay’
If C/(v + &) <land A — C > 2, we have

2 1
o [ ltP e f 10w l) + 3 [ MG) + [ xolasf + [ Ll
< C{llgle + = +lulleT(5)) e

Because of {1.19)s, this is equivalent to (1.16)s, and we finish the induction
proof. Then (1.5) follows from (1.16)s.

’u
ay’

< C;{(v + ¢€)

e+l ()}

gl +lu

L 12
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Hence we have proved Theorem 1.1. q.e.d.
Let L(w) be the linearized equation of G(w) = w,, + eF(e, x, y, VW, V>w)
about w. Define
0 =|G(w)|z=py and Ly(w)p =L(w)p + bOx1p,,.

By Lemma 0.1, Ly(w) is a degenerate elliptic operator. In terms of w,

- 0F L or
R T T
Hence
la;;l. and |a;|c2 < Ce|lw|ct < Coewlne.

Therefore we have the following, -

Corollary 1.4. Suppose |w|| gs < 1 and e, 8, are sufficiently small, then there
exists an integer Sy(¢,0) depending on € and 8 such that if g € H*, 0 < 5 < 5y,
then there exists a unique solution p € H* of the equation:

Ly(w)p =g inD;
p(x0> y) = P(_xo, y) = 0’
and furthermore the following estimates are true

(1.21) lollz < C.{llgl mlpllme ).

Proof. Let Lj be the regularization (1.4) and p” be the unique H*-solution.
In terms of w, we have

(1.20)

T wl

I(s) < eC([[wllaes + 1).
For s > 2, Theorem (1.1) implies
el < Cs{\lg\ w +iiwlasf o2},

where C, is independent of ». Taking » — 0, we have the estimate (1.21). For
s = 0, (1.8) implies

fu2< ~(Lgu,u) = — (g, u),

where u = e**’g. Therefore [u? < Cf g2 For s =1, differentiate (1.20) by
d/dy. Using integration by parts,

du d
(5’ [Lﬂ’@]“)

By assumption ||w|| z¢ < 1, we have

du d
(5’ [Lw]“)

2
< C(laijlcz + |ai|c2)“u””‘-

2
< Crellullin.
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By (1.8), we have

2
5] < <l I3, « i)
It is equivalent to
dg dp 2
< ===+ ‘
“ 2 { il Oy |i. EHPHHl}
We have
(1 + all)pxx =8~ Z aijpx,-x,- - Zaipx,-'
G, H#=A.1) ’ i

Multiplying p and integrating both sides,

f 52 < Clllolzlel + elolin}.

Combining this and the above estimate of |[dp/dy| 2, we have ||p|l;n <
C||2ll ;p, provided ¢ and @ are small.

2.

In this section, we will modify the Nash-Moser-Hormander’s scheme to solve
the nonlinear equation:

w,. + eF(e,x, y,vw,v*w) =0 in D;
w(xg, y) = w(—xg,y) = 0.

(2.1)

Smoothing operators S,;. We have a family of smoothing operator S;, 8 > 1,
satisfying the following properties:

(S)) S,: H*(D) — H*(D) is a linear bounded operator for any s, s.

(S2) Sptll e < GO el s i 5 > s

(S3) Il — Sgull g < CO” l[utll e, if 5 > 5

One way to obtain the smoothing operators is the following: Consider a
smooth domain D D D. We can extend functions « in H*(D) to a function @
of H*(D), and satisfies

)70y < Cllullec).

Suppose S, be a family of smoothing operator in H*(D) satisfying (S;)—(S;)-
Then we define S, in H*(D) by S,u = S,it| . It is easy to prove S, satisfies

(8)-(85)-



226 CHANG-SHOU LIN

Nash-Moser-Hérmander’s scheme. Choose p, = 2", §, =S, , and w, = 0.

We will construct w, by induction on n as follows: Suppose wy, wy,- - -, w, have
been chosen. Define w,_ ; = w, + p, where p, is the solution of

Lﬂ,,(vn)pn = 8&n in D7
pn(‘xO’ y) = pn(—x0$ y) = O’
where v, is defined as v, = S, w,,
(22) 0}1 =|G(vn)|L°°’
and g, will be specified later. For j < n, the quadratic error 0 is defined as:
G(Wj+1) = G(Wj) + L(Wj)pj + Qj(ij Pj)
= G(Wj) + LOJ(wj)pj - 0jX1(pj)yy + Qj(wj7 Pj)
= G(Wj) + L0j(vj)pj +(L€j(wj) - LHJ(Uj))pj - 0jX1(Xj)yy + Qj(wja Pj)-
Denote

(2.3) e, = ( Ly (w) — Ly (0))0; — 8x:(0) ,, + Q,(w..p)),

(2.1)

j-1
(2.4) E = goei.

Hence G(w; 1) = G(w;) + g, + e;. If weset g, = —SG(w,) and
8 =S1E;_1 — S;E;+(8;_ = 5,)G(w,) for j>0,

then
G(wn+1) = G(w()) + Z gj + En + €,
j=0
(2.5) = G(wy) — S,G(w,) = S,E, + E, + e,

=(I-S8,)G(w)) +(I—-S,)E, + e,.

Theorem 2.1. Suppose F € C°*, s, > 6, and ¢ is sufficiently small. Then
the sequence {w,} converges to a solution w of (0.4) in H*+"1.

In the following, we will give a proof of convergence of w,. The proof is
essentially the same as the usual proof of Nash-Moser-Hormander’s scheme.
We include it for convenience. We will use the notation |||, to denote Sobolev
norm ||ul| ;.

First, recall a well-known lemma.

Lemma 2.2. For any two functions u, v, the following inequality is true:

| D*uD® ||z < C,{{|ul=llv

w +ulwlole-},
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where

aal + - ta,
Da=m, s=a; + - +a, + B+ - +8,.

This inequality follows from interpolational inequality immediately.

Fix an integer § > 0, and e is chosen sufficiently small so that estimate
(1.21) can be applied for 0 < s <§. 0 <&<1, b>0 are fixed. b will be
chosen as large as possible. We want to find constant C,,C,,---,C,, and §
which depends only on §, and &, and independent of j, such that the following
inequalities are true:

(Py); lo;oll, < 8u5=% for0 < s <5
C,6 ifs—b< —¢,
(P2) Il \{camb ifs—b>8
(P3); wlly and fyllg<1
(P4); ”WJ - Uj” Coops™ b for0<s<3§;
X ifs—b< —8
(P5) legd, < {c38uj-‘b ifs—b>g
(P6); ||e;_1|| < Co%wZf for0<s<§-2;
(P7); lg;ll, < Cs8%57" for0 <s<5;
(P8); 8, < Cebui™".

We will prove (P1);~(P8); by induction on j. At the beginning, we may
assume G(w,) € H®+ and ¢ is very small so that (P1),—(P8), is true. For
J = 0, we only have to check (P7), and (P8),. Now suppose (P1);—(P8); are
true for 0 < j < n, and we want to prove (P1),,, ,—(P8),_ ;-

(P1),..: Applying Corollary 1.4, we have for 0 < s < §,

”Pn Hs < Cs{ ” &n ” + “U ||:+4“gn ” }
(2.6) < C{Cs82570 + CyCs8%u5 420 )
< C(Cs + C;C5) 8%us78,
provided 6 < b. Hence, if 8 is small, ||p,||, < 8ps°.
(P2)ps1t Wosr =W, + p, =27 Opj’

Woalls < lepjll < Zus .
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Ifs—b< =& fw i, < 82°°0,uj =C8ifs—bzE

~ n 1, s—b
” +1“ n+1
j=0 nu‘n+1
0 -
i; 27)" = Gt

(P3) 41 Wosille < €18 by (2.6) and (P2),,,,
“Un+1”6 C” +1”6 CC8

so if 8 is chosen very small, then

[Woi1lle <1 and fo,.]ls <1
P4, ;s For0 < s <3,
” Wiyl — Un+1”s =”"vn+1 - S,AL,,+1wn+1” < Cs"l’iz:—glnwn+1”§
< CC 6!‘w,+1}"n+1 = Cops .

(P5) g1t 0psallsea < sy‘n+1“ wrills S CSC@;LS;J:L‘TZ’,

oneillpre <Nnss = Warrllorzs T Wi lloss
< (CP + Cd)ps 1
Using interpolational inequality for b+ e < s < § + 4,
" Un+1“s < C38-u‘sn:—b1
For0 < s < b — & wehave
f Un+1H C ” +1“ C,Co.
(P6)n+1: €, = (Len(wn) - Le,,(Un))P - 0nxl(pn)yy + Qn(wn) pn)
=e,+e+e),
er,l = (La,,(wn) - La,,(Un))Pn

Using Lemma 2.1, we have

e

0 < C”wn - Un“3”pn ”3 C282 I 3—1

3~
— CZSZ(%) ,uf’, 26 (2b—3C282)#2—b‘u;b < 2P3C 52“;17,
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and
lealls—2 < C{lw, = vl oullz + 1w, = vallzll ol )
< C{lw, = alldlealls + 1w, = allallealls }
C{ 282[1.5”_ 4— b+C82 4 bs b}
< 2CCAMB—D=0ub=b < 2CCHWE- Db

by (2.6). Then, using interpolational inequality, we have, 0 < s < §— 2, |le
< C8%5? for some constant C,. Thus

lewll, < COMpall,.n < CCBE00s7072 < CC%50,

here we use (P8),. Since

" = G(w,.,) — G(w,) — L(w)p, = f (1—t)—G(w +tp) dt,

alls

using Lemma 2.1, we have

le” llo < CIwallcrcoy + Waarl o) lealls < €873 < Eo%re,
here we use (P3),, (P3),, 1, and (P1),,_ ;. Similarly,

e s < {0l + I Mol + (10l + s L), Bellon )
< C{2C %5 u4b) 4 8755 b+4-b) < G %270,
By interpolational inequality, we have, for0 < s < § — 2,
e 1, < Cio%w*.

nr “

Combining estimates of |le,||,, [le/ll;, lle,” ||,» we have proved (P6) . ;.
(PT) i1t 8us1 = SpEn = Spi1Epir +(S, — S,.1)G(wp)
= (Sn n+l)E n+le +(S n+1)G(wO);

n—1
E,= ) e;
Jj=0

n—1

(PR V8 FEPES Z le;lly_, < Cad? X w7270 < G832,
= =

provided § — 2 — b > 0;
lgurillo < C{E2NE oz +lells + pa[G(wo) . } < Ci8%3205
provided e is sufficiently small and

(2.8) ss > b
o) < CI8Y.

I gnrlls < C{H‘%:+l||En ls—a + phoalienlls
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By interpolational inequality, we have proved (P7) ;-
(P8, 0,1 = IG(v,, )= By (2.5),
G(Un+1) = G(wn+1) + G(Un+1) G( +1)
= (I - Sn)G(WO) +(I - Sn)En + €, + G(Un+1) - G(wn+1)‘
“G(Un+1) ”L°° < C{“(I = 5,)G(w,) ”z
+ ”(I - Sn)En ”2 + "en“2 + “Un+1 - wn+1“4}
{216 (w) |ls. + 1N E oz + 1278+ 001 = Waar )
C{ e G(w()) Se ,82“71 2mbran S+ C282p‘n:-li} C68p‘n+l‘

Hence, if we assume (2.6), (2.7), and (2.8), we have proved the induction step.
Proof of Theorem 2.1. Suppose s, > 6. Choose b =5, —1/2, e =1/2
Forn>=m, s <b,

n—1
W, = wall; < lep,lf <8 ¥ (27)7 < +o.

j=m—1

P\

Hence w, converges to w in Hs'_l. By (2.15),
G(w,) =(I—8,)G(wy) +(I - S,)E, +e,.
By (P6);, we have lim,, _, , ,||G(w,,)ll;,_1 = 0. Hence G(w) = 0, i.e., we have

found a solution of (0.4).
Remark. Suppose our original metric is C*. Then

F(e,x,y,vw,v2w) e C°73.

By Theorem 2.1, we require s — 3 > 6, i.e, s > 9 and the solution w € H*~*
c Cs_6.
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